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Abstract

In this paper, a new multi-step iterative scheme with errors involving a
finite family of nonexpansive nonself-mappings in a Banach space is
defined. Weak and strong convergence theorems of the new iterative

scheme are established in a uniformly convex Banach space.
1. Introduction and Preliminaries

Let X be a real normed linear space and C a nonempty subset of X. A

mapping T : C — C is said to be nonexpansive on C if
[T =Ty | <fx-v]
for all x, y € C.

Fixed-point iteration process for nonexpansive mappings in Banach
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spaces including Mann and Ishikawa iteration processes have been
studied extensively by many authors to solve the nonlinear operator
equations in Hilbert spaces and Banach spaces; see [4, 8, 13, 14, 20, 21].
In 1993, Tan and Xu [20] introduced and studied a modified Ishikawa
iteration process to approximate fixed points of non-expansive mappings
defined on nonempty closed convex bounded subsets of a uniformly
convex Banach space. Five years latter, Xu [25] introduced the iterative
schemes known as Mann iterative scheme with errors and Ishikawa
iterative scheme with errors. In 1998, Takahashi and Tamura [19]
introduced and studied a generalization of Ishikawa iterative schemes for
a pair of nonexpansive mappings in Banach spaces. In 2005, Khan and
Fukhar-ud-din [7] extended their scheme to the modified Ishikawa
iterative schemes with errors for two mappings and gave weak and
strong convergence theorems. Iterative techniques for approximating
fixed points of non-expansive nonself-mappings have been studied by
various authors; see [24, 5, 18, 9]. In [16], Shahzad extended Tan and
Xu’s results [20, Theorem 1, p. 305] to the case of nonexpansive nonself-
mapping in a uniformly convex Banach space. In 2006, Plubtieng and
Ungchittrakool [12] extended the two-step iterative schemes defined by
Shahzad [16] to the multi-step iterative scheme with errors for a finite
family of nonexpansive nonself-mappings. They gave some weak and
strong convergence theorems of such iterations for a finite family of
nonexpansive nonself-mappings in uniformly convex Banach spaces.
Recently, Thianwan and Suantai [22] introduced and studied the new
class of three-step iterative scheme with errors for nonexpansive nonself-
mappings and gave some strong and weak convergence theorems for such
mappings.

Motivating these facts, a new multi-step iterative scheme with errors
for a finite family of nonexpansive nonself-mappings is introduced and
studied. Our schemes can be viewed as an extension for three-step
iterative schemes of Thianwan and Suantai [22]. The scheme is defined

as follows:

Let X be a normed space, C a nonempty convex subset of
X, P: X —» C a nonexpansive retraction of X onto C and 73, Ty, ...,

Ty : C > X are given mappings. Then for an arbitrary x; € C, the
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following iteration scheme is studied:

1 1 1 1.1
Xpn = P(anTlxn + BnXn + Ynln

2 2 2 2 2
Xn P(anT.‘an + ann + Ynln

N N N _N-1 N_ N
Xn+l = Xp = P(an Tan + B xp +Yn Un )’ (1.1)

n>1, where {og}, {onl, ... fan'}, B}, BR) oo B2} frnd i, s
{yN1 are appropriate sequences in [0, 1] with af, + p% +y% =1 for all

i=1 2, .., N, and {u}l}, {u%}, . {u,Z,V} are bounded sequences in C.

If N=3,1T1=T,=T3="T, a, =a}l,cn=a%,an=ai,bn=yk,
2 3 1 2 3 1 2
dn =Yns Bn =Vno Up = Uy, Uy = Uy, Wy = Uy, 2 = Xp and Yn = Xn,
then the iterative scheme (1.1) reduces to the iterative scheme with
errors for a mapping defined by Thianwan and Suantai [22]:
z, =PQ-a,-0b,)x, +a,Tx, +b,u,),
In = P((l —Cp — dn)zn + CnTxn + dnvn)’

where {u,}, {v,}, {w,} are bounded sequences in C and {a,}, {b,}, {c,},

{d,}, {a,}, {B,,} are appropriate sequences in [0, 1].

The purpose of this paper is to establish several strong and weak
convergence theorems of the multi-step iterative scheme with errors (1.1)
for a finite family of nonexpansive nonself-mappings in a uniformly
convex Banach space. More precisely, we prove weak convergence of the

iteration process in a uniformly convex Banach space X such that its dual

X" has the Kadee-Klee property.
Now, we recall the well known concepts and results.

Let X be a Banach space with dimension X > 2. The modulus of X is
the function &y : (0, 2] — [0, 1] defined by
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. 1
x(e) = inf{L~[ G+ 9 el = 1y =12 = =y ).

Banach space X is uniformly convex if and only if §x(¢) > 0 for all

e € (0, 2].

A subset C of X is said to be retract if there exists continuous
mapping P : X — C such that Px = x for all x € C. Every closed

convex subset of a uniformly convex Banach space is a retract. A mapping

P:X — X is said to be a retraction if P? = P. If a mapping P is a
retraction, then Pz = z for every z € R(P), range of P. A mapping

T:C —> X 1s called demi-closed with respect to y € X if for each
sequence {x,} in C and each x € X, x» — x and Tx,, — y imply that
x € C and Tx = y.

Recall that a Banach space X is said to satisfy Opial's condition [11] if
x, = x weaklyas n - o and x # y implying that

limsup|x, — x| < limsup| x, — y |-
n—ow n—ow

A Banach space X is said to have the Kadec-Klee property if for every
sequence {x,} in X, x» — x and |x,| —>|x]| together imply
| x, — x| - 0. Afamily {T; : i =1, 2, ..., N} of N nonself-mappings of C
(ie, T; : C > C) with F = ﬂil F(T;) # @ is said to satisfy condition
(B) on C [3] if there is a nondecreasing function f : [0, o) — [0, o) with

f(0) = 0 and f(r) > 0 for all r € (0, ») such that

max {lx = Tpx [} = fld(x, F)) (1.3)

for all x € C; see [15, p. 377] for an example of nonexpansive mappings
satisfying condition (B). The family {T} : i = 1, 2, ..., N} is said to satisfy
condition (A) if (1.3) is replaced by

| = Ta| > f(d(x, F(T)).

In the sequel, the following lemmas are needed to prove our main
results.
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Lemma 1.1 ([20]). Let {s,}, {t,} be two nonnegative sequences
satisfying

Sp+1 S8, +t, forall n > 1.

o8] . . . .
If anltn < o, then ,}fios" exists. Moreover, if there exists a

subsequence {snj} of {s,,} such that Sp; > 0 as j > o, then s, —> 0 as
n — o.

Lemma 1.2 ([23]). Let p >1 and R > 1 be two fixed numbers and X

a Banach space. Then X is uniformly convex if and only if there exists a

continuous, strictly increasing, and convex function g : [0, ©) — [0, ®)

with g(0)=0 such that |rx+@Q-A)y|P <HMx|P +Q-1)y]|P -
W,(\)g(|x ~y|) for all x, yeBr(0)={x e X :|x|< R}, and e

[0, 1], where W, (1) = A1 = 1)P + 2P(1 - 1).

Lemma 1.3 ([6]). Let X be a real reflexive Banach space such that its
dual X* has the Kadec-Klee property. Let {x,} be a bounded sequence in

X and x*,y" € oy(x,); here w,(x,) denote the set of all weak

subsequential limits of {x,}. Suppose lim |tx, + (1 —¢)x" — y*| exists for
n—w
all t € [0, 1]. Then x* = y".

Lemma 1.4 ([1]). Let X be a uniformly convex Banach space, C a
nonempty closed convex subset of X and T : C - X a nonexpansive

mapping. Then I —T is demi-closed at zero, i.e., if x, - x weakly and
x, — Tx, — 0 strongly, then x € F(T), where F(T) is the set of fixed
points of T:

Lemma 1.5 ([17]). Let X be a Banach space which satisfies Opial's
condition and let {x,} be a sequence in X. Let u,v e X be such that
lim, | x, —~w| and lim, ,|x, —v| exist. If {x, } and ix,, } are
subsequences of {x,} which converge weakly to u and v, respectively, then

u = .
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We denote by I' the set of strictly increasing, continuous convex
function y : R* — R™ with y(0) = 0. Let C be a convex subset of the
Banach space X. A mapping 7 : C — C is said to be type (y) if y e T

and 0 < a <1,
(| aTx + (1 - )Ty - T(ox + 1 -o)y)|) < [ x -y |- | Tx - Ty|
for all x, y in C.

Lemma 1.6 ([2], [10]). Let X be a uniformly convex Banach space and

C a convex subset of X. Then there exists y € I' such that for each

mapping S : C — C with Lipschitz constant L,

_ 1
| aSx + (1 - a)Sy — S(ax + (1 — a)y)| < Ly 1("x -y - f" Sx — Sy ||)
forall x, y e C and 0 < a < 1.

2. Main Results

In this section, we prove weak and strong convergence theorems of
the iterative scheme given in (1.1) to a common fixed point for a finite
family of nonexpansive nonself-mappings in a uniformly convex Banach
space. In order to prove our main results, the following lemmas are
needed.

Lemma 2.1. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a

nonexpansive retraction. Let Ty, T, ..., Ty : C —> X be nonexpansive

nonself-mappings. Let {x,} be the sequence defined by (1.1) with

0 ; . N
anlyﬁl <o for each i =1,2,...,N. If F::ﬂile(Ti):tQ, then

lim |x, — x*| exists for all x* € F.
n—w

Proof. Let x* € F. Using (1.1), for each n > 1, we have

loen =27 = | PanTixy, + Bup + vpun) = 2|
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= [ PanTixy + Brxn + vaun) - P&"))
< o Ty + By + vnty — x|
< o | Ty, = 27|+ Bullxn = 27| + vafun — x|
< opllxn = 2+ Bullen - 7|+ vnlun - x7|
<[l - " + 43,
where dj, = vyuy —x"|. Since Yy}, <o, 3 d, < = Next, we
note that
ln = x"|| = |P(anToxy + Bran + vaun) - x|
= |P(oz Ty, + By + vaun) - Pa)|

< |o2Tyx,, + Baay +yauz — |

IA

ol oy — 2"+ Balan - ="+ villuz — 27

IA

ooy = x" |+ Ballen — 2"+ vilun - =7

IN

anla, ="+ Ba(lx, — "+ dp) + valus — ¥

apla, — ||+ Balx, — x|+ Bady + valun - x|

(on +B2)lxn — x| + Bady + valup — 7|

<, - ™|+ dy,
where d2 = p2d} + yZ|uZ — x*|. Since Z:zl dl < o and Z:=1 v2 < o,
Z:Zl d,2l < o, Similarly, we have
g = x*|| = |P(ab T, + Biran +vaun) — x|

= |P(adTsx, + Boxs +y5ul) - P(x™)|

< BTy, + BiaZ +ydud — ¥
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IA

o Ty =" |+ Ballai - ="+ valun - x|

IA

adloe, —x* |+ B3 (e, — x|+ d2) + vilup - x|

oy = "]+ Ballxn — 2"+ Bady + valun - x|

(ap +Ba) [ xn — ™[+ Bads +villuy - x|
< Jlan - "]+ dy,
where d,3l = Bid,% + y‘?l”u;o’Z —x"|, and so ijl d,?; < .

By continuing a similar method, there exists a nonnegative real

sequences {d.} such that 2:21 d. < and
||x;l -2t < x, - xT| + de, vn>1Vi=12, ..., N. 2.1)

Thus, by (2.1), we have ||x,,; —«*| =[x —x*| < [, — x| + ¥ for all

n eN. Hence, by Lemma 1.1, lim|x, —x"| exists. The proof is
n—oo

completed. 0

Lemma 2.2. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a

nonexpansive retraction. Let T, Ty, ..., Ty : C > X be nonexpansive

nonself-mappings. Let {x,} be the sequence defined by (1.1) with
z:zl yfl <o and {ocil} cle,1-¢] for all i=1,2,..., N for some

ee(0,1). If F == ﬂfil F(T;) # @ and lim sup(afl + [3;) <1 for all

n—ow

i=1,2, .., N, then lim|x, - Tix,| =0 forall i =1, 2, ..., N.
n—oo

Proof. Let x* € F. Then, by Lemma 2.1, lim,_,|x,, - x"| exists.
Let lim,_,,|x, —x"| = r. If r = 0, then by the continuity of each 7} the

conclusion follows. Suppose that r > 0. Since {x,} and {&,} are bounded
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sequences for all i =1, 2, ..., N, there exists R > 0 such that xi{l —x"

+ b (ul - x), Tix, — x* + v (ul — xi71) € BR(0) for all n>1 and for

alli =1, 2,..., N. Using Lemma 1.2 and (2.1), we have
i [P = |P(a Timy + Bl + i) — [
i i1 [ *12
< "anTixn + ann + Yplp — X "
= o (T, = 2™ + viy (= xi7")
(1 -ap) (e =2 (g, -2 )P
< ob|Tix, — 2% + vl — <71
an n Yn un n
+ (=) = 2" v (g, -2

= Walo) (1 Tixp =257 )

IA

o (ot = x|+ yh el - 7))
+ (= ab) (b =2t + vhuh, -«

- Wy(ah) g(| Tix, — 2571

IA

o ="+t + v, - )

(= o) (b = "I+ d 7+ v — )

= Walo) (T, =27t )

(e = 2"+ 251) = Wolon)g(| T — 7D, (22)
where A0 = @it 4yl |lul — x5, Since z;ozl dit < oo, Z:;l vl <
and {|u} —x5|} is bounded, we have Zle Al < 0. Since

o, e [e, 1-¢] for some ¢ e (0, 1), it follows that A = &2 < Wy(al,) for all
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n € N. This together with (2.2), we have
1g(| T = x| < (e = 2"+ 2517 = g, - ="
= Jon ="+ 205y - 2]+ 051
~xnan - 2"

ol L i A
where pl! = 205w, — a7+ (1) Since YT 2T <o, we get
Z:ZI pil < . This implies that r}gr;o g(|Tyx, — xi71) = 0. Since g is
strictly increasing and continuous at 0 with g(0) = 0, it follows that

lim||Tjx, — xi 5| =0 forall i =1, 2, ..., N. Note that,
n—ow

it = 2 = Pl Tz + By a4y e ) =
= |Plah Ty qn + Bl Mk i i) = Pl )|
< loh M (Tgxn = x5 %) + vy ! - 22|
< o Tyax, — a2y e - x5
Since ’}lm IT; 1%, — 2572 = 0 and Z::1 yol < oo, it follows that

lim 571 - 2572 = o,
n—oo

Using (1.1), forall i =1, 2, ..., N, we have

i = xnll = 1P(ah " Tyaxn + By + v ui ) = x|
< Nl Ty + Bl + v My = x|

= ||a£171(Ti—1xn - xn) + Bi;l(xif - xn) + Y l(u - xn)"
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= ey (T, - a2 + a2 = )

A A N R (o A |
< of M Tioqx, = 2]+ ok = x|
+ By M = x|+ v s -
< oy Tigey — i 2+ oy g - !
g = |+ Bl e = T = |
R I
< ol Tz, — a2+ o g ? - x|
T N

L N PR e |
This implies that

Ui | E o R [ BEAEE
R
L
e = .

If lim sup(ocil + B;) <1 for all i=1,2,..., N, then there exist a
n—w

positive integer ny and n e (0,1) such that ol +BL <m <1 for all

n = ng. Hence
A e R e

+9|xi72 — 7Y, Vi = ny.
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; : i—2 . i—2 i1 © i
Since lim||7} yx, ~xj;*[|=0, lim ;% ~x} ! | =0 and anly; <o,
it follows that lim|x, — xfl_l | = 0. Thus, forall i =1, 2, ..., N, we have
n—oo

"xn - Tixn " = "xn - x;:L_l + sz_l - Tixn "

< xn = 257 + | T, — 2571 —> 0 as n — .

The proof is completed. 0

The following result gives a strong convergence for a finite family of
nonexpansive nonself-mappings in a uniformly convex Banach space
satisfying Condition (B).

Theorem 2.3. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a

nonexpansive retraction. Let Ty, Ty, ..., Ty : C —> X be nonexpansive

nonself-mappings which are satisfying condition (B). Let {x,} be the

sequence defined by (1.1) with Z:zl yil < o and {ocil} c e, 1-¢] for all
i=1,2 .., N for some €e(0,1). If F = ﬂf:il F(T,)# 2 and

lim sup(ol, + BL) <1 forall i =1,2, ..., N, then {x,} converges strongly
n—w
to a common fixed point in F.

Proof. By Lemma 2.2, r}gr;)" Tix, —x, || =0 for all i=1,2,..., N.
Now by condition (B), f(d(x,, F)) < M,, = 1122)]%{" Tix, —x, |} for all
n € N. Hence r}glgo f(d(x,,, F)) = 0. Since f is a nondecreasing function
and f(0) =0, therefore r}1_r)130 d(x,, F)=0. Now we can choose a
subsequence {xn]} of {x,} and a sequence {y;}e F such that
||xnj -yl < 27/, By the following method of the proof of Tan and Xu

[20], we get that {yj} is a Cauchy sequence in F' and so it converges. Let
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yj = y. Since F is closed, therefore y € F' and then Xp; > Y- By

Lemma 2.1, lim|x, — x"|| existsforall x* € F,x, -> y € F. O
n—

If N=3T =Ty,=T;=T,a, =a-,¢, =02, a, =a>, b, =7,

2 3 1 2 3 1 2
dn = Tn> Bn =Yns Up = Up, Up = Up, Wy = Up, 2y = Xp and Yn = Xn»
then the iterative scheme (1.1) reduces to that of (1.2) and the following
result is obtained.

Theorem 2.4. Let X be a uniformly convex Banach space, C a
nonempty closed convex nonexpansive retract of X with P as a

nonexpansive retraction, and T :C — X a nonexpansive nonself-
mapping with F(T) # &. Suppose that {a,}, B,}, {a,}, {b,}, {c,} and
{d,} are sequences of real numbers in [0, 1] with ¢, +d,, < [0,1] and

o0
d, <o,

o, +B, €l[0,1] for all n=>1, and ZOO o <, Z
n=

n=1

ZOO ) B, < o. Suppose that T satisfies condition (A): If
n=

(1) 0 < liminf a, < limsup(a, +B,) <1,
n—oo n—

and

() 0 < liminf¢, < limsup(c, +d,) <1, and limsupa,, <1,
n—© n—w n—w

then the sequences {x,}, {v,} and {z,} defined by the three-step iterative
scheme (1.2) converge strongly to a fixed point of T.

Proof. Let x* € F(T). Then, as in the proof of [22, Lemma 2.1 (i)],
{x,} is bounded, lim,_,,|x, — x*| exists and
s = 27 < e = &7+ M(by +dyy + Br),
where M, = sup{lu, - x| : n 21}, My = sup{|v, —x"|: n 21}, Mg =
sup{lw, —x*||: n 21}, M = max{M; :i =1, 2, 3}, and so Z::1 M,

+d, +B,) <o for all n>1. This implies that d(x,.;, F(T)) <
d(x,, F(T))+ M(b, +d, +B,) and so, by Lemma 1.1, lim,_, . d(x,,
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F(T)) exists. Also, by [22, Lemma 2.1 (iv)], lim,_,,|x, - Tx, | = 0.

Since T satisfies condition A), we conclude that

lim,_,.d (x,, F(T)) = 0. Next we show that {x,,} is a Cauchy sequence.
Since lim, ,.d (x,, F(T))=0 and Z:Zl M@, +d, +B,) < =,
given any ¢ <0, there exists a natural number ny such that

€ €
d(x,, F(T)) < 1 and ZZ:nO M(b, +dy +Bp) < 3 for all n > ng. So we

can find y* € F(T) such that [lx, - y*| < % For n > ny and m > 1,

we have

[ %nim = %n | = 1%nsm = y* I+l — y*"

n
<oeng =3 [+ %0y =571+ D M(by, +dy, +Bp)

k=ny

<& B 8
4 4 2 7

This shows that {x,} is a Cauchy sequence and so is convergent since

X is complete. Let lim,_,, x,, = u. Then d(u, F(T)) = 0. It follows that
u € F(T). This completes the proof.

Theorem 2.5. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a

nonexpansive retraction. Let Ty, T, ..., Ty : C > X be nonexpansive
nonself-mappings.  Suppose that one of the mappings in

{T: :i=1,2,..., N} is completely continuous. Let {x,} be the sequence

defined by (1.1) with Z:=1 yﬁl <o and {ail} cle,1-¢] for all
i=12,..., N for some ee(0,1). If F := ﬂfil F(T,))=2 and

lim sup(al, +B4) <1 forall i =1,2, ..., N, then {x,} converges strongly
n—o

to a common fixed point in F.
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Proof. By Lemma 2.1, {x,} is bounded. In addition, by Lemma 2.2,

lim|x, -Tiyx, ||=0 for all i=1,2, ...,N, then {Tjx,} are also
n—oo

bounded for all i =1, 2, ..., N. If T}, is completely continuous for some
kefl, 2 .., N}, then there exists a subsequence {Tkxnj} of {Thx,}
such that Tkxnj — x" as j - oo It follows from Lemma 2.2 that

limjﬁw”xnj — Tpxp, | = 0. So by the continuity of 7}, and Lemma 1.4, we
have limj%w"xnj -x"| =0 and x" € F. Furthermore, by Lemma 2.1,

we get that lim, ,[x, —x*| exists. Thus lim,_ ,,[x, — x*| = 0. The

proof is completed.
_ _ _ _ _ 1 _ 2 _ .3 _
For N=3,T1 =Ty =T33 =T, a, =a,,¢, =0,, 0, =0dy,, b, =17,

2 3 1 2 3 1 2
dn:Yn’ﬁn:Yn’un:un’vn:un’wn:un’zn:xn and Yn = Xp 1N

Theorem 2.5, we obtain the following result.

Corollary 2.6 ([22, Theorem 2.2]). Let X be a uniformly convex
Banach space, C a nonempty closed convex nonexpansive retract of X with
P as a nonexpansive retraction, and T : C — X a completely continuous

nonexpansive nonself-mapping with F(T) = @. Suppose that {a,},
B, 1a,} b, ) {c,,} and {d,,} are sequences of real numbers in [0,1] with

¢, +d, €[0,1] and a, +B, €[0,1] for all n>1, and z:zl b, < o,
Z:zl dy < oo, Z:zl B, < o, and

(i) 0 < liminf a, < limsup(a, +B,) <1, and
n—o n—om

A

(i) 0 < liminf ¢, < limsup(c, +d,) <1 and limsupa,, < 1.
n—© n—w n—w

Let {x,},{y,} and {z,} be the sequences defined by the three-step
iterative scheme (1.2). Then {x,},{y,} and {z,} converge strongly to a

Fixed point of T.

We recall that a mapping 7 : C —» C 1is called semi-compact (or
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hemicompact) if any sequence {x,} in C satisfying |x, — Tx,| > 0 as

n — o has a convergent subsequence.

Theorem 2.7. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a

nonexpansive retraction. Let T1,Ty,...,Tn : C > X be nonexpansive

nonself-mappings.  Suppose that one of the mappings in
{T; :i=12,...,N} is semi-compact. Let {x,} be the sequence defined by

(1.1) with Z:zl vh <o and {0} cle,1-¢] forall i=1,2,..., N for

some ¢e(0,1). If F=NN,F(T)%@ and h,?jlcfop(“b%)d for all

i =1,2,...,N, then {x, }converges strongly to a common fixed point in F.

Proof. Suppose that T;; is semi-compact for some iy € {1, 2, ..., N}.

By Lemma 2.2, we have lim |x, - T x,| = 0. Since T}, is semi-compact,
n—ow
there exists a subsequence {xn]} of {x,} and x" € C such that
Xp; = x" as j — o. Now Lemma 2.2 guarantees that lim ||xn] - Tixy, [
J—>©

=0 forall i=1,2, ..., N. Hence |x" - Tjx"| =0 forall i =1, 2, ..., N.
This implies that x* € F. By Lemma 2.1, lim,_,,[x, — x"| exists and
then lim,_,,[x, —x"| = limj_m"xnj —x*|=0. This completes the
proof.

In the next result, we prove weak convergence of the sequence {x,,}

defined by (1.1) in a uniformly convex Banach space satisfying Opial’s

condition.

Theorem 2.8. Let X be a uniformly convex Banach space which
satisfies Opia’s condition and C a nonempty closed convex nonexpansive

retract of X with P as a nonexpansive retraction. Let Ty, Ty, ..., Ty : C —>

X be nonexpansive nonself-mappings. Let {x,} be a sequence defined by

(1.1) with Z:zl yil < o and {ocﬁl} cle,1-¢] forall i=1,2,..,N for
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some ¢ € (0,1). If F = ﬂf\_fl F(T,) = @ and lim sup(al, + B,) < 1 for all
- n—o

i=1,2, .. N, then {x,} converges weakly to a common fixed point in F.

Proof. Let " € F. By Lemma 2.1, lim|x, —x"| exists. Now we
X—>0

prove that {x,}has a unique weak subsequential limit in F. To prove

this, let {x, } and {xnj} be subsequences of {x,} and zj, zg € C such
that x, — 2z weakly as i - o« and Xp; = 22 weakly as j > «. By

Lemma 2.2,

}L%llxnl - Tkxni ” =0= ]hj}gollxn] - Tkxnj "

for all £ =1,2,.., N and by Lemma 1.4 insures that I — 7T}, are demi-
closed at zero for all £ =1, 2, ..., N. Therefore we obtain 7T}z; = 2; and
Tpzg =29 for all k=1,2,.., N. Thus z, 29 € F. It follows from
Lemma 1.5 that z; = z9. Therefore {x,,} converges weakly to a common

fixed point in F.

For N=3T, =Ty, =Ty =T, a, =a, ¢, =02, 0, =a>,b, =7,
dn :Y%’B:Y%’un :u}uvn :urwan :ug’zn :x}z and Yn =x,% In
Theorem 2.8, we obtain the following result.

Corollary 2.9 ([22, Theorem 2.4]). Let X be a uniformly convex
Banach space which satisfies Opial’s condition, C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction, and
T : C - X a nonexpansive nonself-mapping with F(T) # &. Suppose

that {o,}, B}, {an}, ,}), {c,}, {d,,} are sequences of real numbers in

[0,1] with ¢, +d, €[0,1] and «, +B, €[0,1] for all n>1, and
Z::l bn < o, Z::l dn < o, Zj:l Bn < o, and
(l) 0 < lim infn—>°0 Qn < lim Supn—)oo(an + Bn) <1,

and
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(i1) 0 < liminf, _,, ¢, < limsup,_,,(c, +d,) <1 and
lim sup,,_,, a, <1.

Let {x,} be the sequence defined by three-step iterative scheme (1.2).
Then {x,} converges weakly to a fixed point of T.

Finally, we will prove weak convergence of the sequence {x,,} defined

by (1.1) in a uniformly convex Banach space X whose dual X has the
Kadec-Klee property.

Theorem 2.10. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a

nonexpansive retraction. Let Ty, Ty, ..., Ty : C > X be nonexpansive

nonself-mappings with F = ﬂf\il F(T;) = @. From an arbitrary x; € C,
define the sequence {x,} by the iterative scheme (1.1) with z:zl yil <
foralli =1, 2, ..., N. Then forall u,v € F, the limit

Tim 1, + (1~ 1) o]
exists for all t € [0, 1].

Proof. It follows from Lemma 2.1 that lim|x, —x"| exists for all
n—oo

x* € F. This implies that {x,} is bounded. Then there exists R > 0

such that {x,} < Br(0)NC. Let a,(t):=|tx, +1-¢t)u—-v|, where

t € (0,1). Then lim a,(0)=|u-v| and by Lemma 2.1, lim a,(l)
n— n—w

= lim| x, —v| exists. Without loss of the generality, we may assume
n—o

that lim| x, —u| = r for some positive number r. For any n > 1 and for
n—o

alli =1, 2, ..., N, we define A,il :C - C by

AL = Pl T, + B AL + yiud),
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where Ag = I, the identity operator on C. Thus, for all x, y € C, we
have |Alx — Aby| < o x — y ||+ By ALk — AL y|| for all i =2, ..., N,
and |Alx — Aly| < ol|x—y|+pLx-y|<|x-y]| This implies, by
induction, that A,i is a nonexpansive mappping for all i =1, 2, ..., N
and for all ne N. Set S, , = AN AN . o~AY, n, m=>1
and b, ,, =[S, putx, + 1 - t)u) - (S, nx, + 1 -1)S, ,u)|, where
0<t<1. It easy to see that A,]lvxn = X415 Spom¥n = Xpim and

"Sn,mx - Sn,my" < " x=)y "

We show first that, for any x* € F, |S,, ,,x" —x"| = 0 uniformly for

all m >1 as n — . Indeed, for any x* € F, we have
| ARx™ = x| < BRllAL =" - "+ vilui - x|
forall i = 2, ..., N, and |ALx* — x*| < yh||ul - x*|. Therefore
| AN " = x| < oyl — 6" + opyilug — 7|+ -
D AT AR TN ARSIV S
for all n > 1, where
1 N _ _x k N i
M = max{sup{"un - x|}, ..y sup{fu, —x ||}} and o, = H By,
n>1 n>1 i=k
Hence
"Sn mx - X ” < ||An+m lAn+m 2 Arzzv : An+m 1An+m 2 An+1x "

+"An+m 1An+m 2° An+1x _ArZL\{I-m 1An+m 2° An+2x "
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+ "AIIL\-fkm—lArﬁm—Qx* - Arlz\{km—lx*" + ”Arzz\{v—m—lx* -7
<JAYE" = x|+ AT = x|+ AR xt - &
N i i
< Mzizl (Yn +VYne1 + -+ Ynem-1)
*
<38,
where 8?‘: = Mz;ilz:):n YZ- Since Z:jzl Yi; <o forall i=1,2, ..,

.
N, we have &, — 0 as n — » and hence |[S, ,x" —x"| >0 as

n — oo. It follows from Lemma 1.6 that

bn,m = "Sn,m(txn + (1 - t)u) - (tSn,mxn + (1 - t)Sn,mu)"

<y (= =[S0, m%n = Sy, mul)
=17 (0 — | = [ — w1 = Sy )
<y 2~ ul =2 = ull =[S0, mu — ul).
Hence y(by, ,,) < (| 2, —u| = |%pem — ul] =[Sy, mu — u|). This implies

that lim, ,, ,. v(b, n) = 0. By the property of y, we obtain that

lim, ;o b, , = 0. Observe that
Apym (@) =t + A —)u—v|
= [[t8p, mxp + (1= t)u -]
<|tSy mxy + A =t)u =S, p(tx, + (1 -t)u)|
1S, m tn + 1= t)u) v

= "tsn,mxn + (1 _t)Sn,mu - Sn,m(txn + (1 _t)u)+ (1 _t)(u - Sn,mu)"
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HSp, m e, + (1 - t)u) — v
< by +[Sp, m(txn + (1= )u) = v + @ = u = Sy, pul
< by + Sty + (1= )u) = Sy ]| + S, mv =~ ]
+ (L= 1) = S, mul
S by + an(t) +[|Sy, mv — ||+ @ = t)u - S, il
S by + @y (t)+ 85, + (1 -1)3;.

Consequently,

lim sup a,, () = lim sup a,, ,, (¢)
m—o0 m—>o0

< lim sup(b,, , + a,(t) + 8, + (1 —1)3y)

m-—>o
<7 sy —ul ~ (lim | 2, — ] - )

+a,t)+3), +(1-1t)8y
and

lim sup a,,(t) < vy~ 1(0) + lim inf @,,(t) + 0 + 0 = lim inf a,,(t).
n—>00 n—»o n—»o

This implies that lim,,_, ., a,(¢) exists for all ¢ € [0, 1]. This completes
the proof. 0

Theorem 2.11. Let X be a real uniformly convex Banach space such

that its dual X" has the Kadec-Klee property and C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let
71, Ty, ...,Ty : C > X be a nonexpansive nonself-mappings with

F = ﬂfil F(T,) # @ and limsup(al, + B,) < 1. From arbitrary x; e C

n—w

define the sequence {x,} by the iterative scheme (1.1) with 2:21 yfl < ©
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and o, ele,1-¢] forall i=12,.., N for some ¢ e (0,1). Then {x,}

converges weakly to some fixed point in F.

Proof. It follows from Lemma 2.1 that the sequence {x,,} is bounded.

Then there exists a subsequence {an} of {x,} converging weakly to a

point x* € C. By Lemma 2.2, we have _lim||xnj - Tixy, | =0 for all
Jj—o
i=12,.., N. Now using Lemma 1.4, we have I — T} is demi-closed at

zero for all i=1,2, .., N. This implies that T;x" =x" for all
i=1,2, .., N. Thus x* € F. Next we prove that {x,} converges weakly

to x”. Suppose that {x, } is another subsequence of {x,} converging

weakly to some y*. Then y* € C and so x*, y" € o,(x,)N F. By
Theorem 2.10,

lim ||tx, + (1 —¢t)x" = y*|
n—ow

exists for all ¢ € [0, 1]. It follows from Lemma 1.3, we have x* = y*. Asa
result, ,(x,) is a singleton, and so {x,,} converges weakly to some fixed

point in F. 0
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