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Abstract

In this paper, a new multi-step iterative scheme with errors involving a

finite family of nonexpansive nonself-mappings in a Banach space is

defined. Weak and strong convergence theorems of the new iterative

scheme are established in a uniformly convex Banach space.

1. Introduction and Preliminaries

Let X be a real normed linear space and C a nonempty subset of X. A

mapping CCT →:  is said to be nonexpansive on C if

yxTyTx −≤−

for all ., Cyx ∈

Fixed-point iteration process for nonexpansive mappings in Banach
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spaces including Mann and Ishikawa iteration processes have been
studied extensively by many authors to solve the nonlinear operator
equations in Hilbert spaces and Banach spaces; see [4, 8, 13, 14, 20, 21].
In 1993, Tan and Xu [20] introduced and studied a modified Ishikawa
iteration process to approximate fixed points of non-expansive mappings
defined on nonempty closed convex bounded subsets of a uniformly
convex Banach space. Five years latter, Xu [25] introduced the iterative
schemes known as Mann iterative scheme with errors and Ishikawa
iterative scheme with errors. In 1998, Takahashi and Tamura [19]
introduced and studied a generalization of Ishikawa iterative schemes for
a pair of nonexpansive mappings in Banach spaces. In 2005, Khan and
Fukhar-ud-din [7] extended their scheme to the modified Ishikawa
iterative schemes with errors for two mappings and gave weak and
strong convergence theorems. Iterative techniques for approximating
fixed points of non-expansive nonself-mappings have been studied by
various authors; see [24, 5, 18, 9]. In [16], Shahzad extended Tan and
Xu’s results [20, Theorem 1, p. 305] to the case of nonexpansive nonself-
mapping in a uniformly convex Banach space. In 2006, Plubtieng and
Ungchittrakool [12] extended the two-step iterative schemes defined by
Shahzad [16] to the multi-step iterative scheme with errors for a finite
family of nonexpansive nonself-mappings. They gave some weak and
strong convergence theorems of such iterations for a finite family of
nonexpansive nonself-mappings in uniformly convex Banach spaces.
Recently, Thianwan and Suantai [22] introduced and studied the new
class of three-step iterative scheme with errors for nonexpansive nonself-
mappings and gave some strong and weak convergence theorems for such
mappings.

Motivating these facts, a new multi-step iterative scheme with errors
for a finite family of nonexpansive nonself-mappings is introduced and
studied. Our schemes can be viewed as an extension for three-step
iterative schemes of Thianwan and Suantai [22]. The scheme is defined
as follows:

Let X be a normed space, C a nonempty convex subset of

CXPX →:,  a nonexpansive retraction of X onto C and ,,, 21 …TT

XCTN →:  are given mappings. Then for an arbitrary ,1 Cx ∈  the
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following iteration scheme is studied:

( )111
1

11
nnnnnnn uxxTPx γ+β+α=

( )222
2

22
nnnnnnn uxxTPx γ+β+α=

      

( ),1
1

N
n

N
n

N
n

N
nnN

N
n

N
nn uxxTPxx γ+β+α== −

+ (1.1)

,1≥n  where { } { } { } { } { } { } { } { } ,,,,,,,,,,, 212121 ……… nn
N
nnn

N
nnn γγβββααα

{ }N
nγ  are appropriate sequences in [ ]1,0  with 1=γ+β+α i

n
i
n

i
n  for all

,...,,2,1 Ni =  and { } { } { }N
nnn uuu ...,,, 21  are bounded sequences in C.

If ,,,,,,3 1321
321 nnnnnnnn bcaTTTTN γ=α=αα=α=≡===

,2
nnd γ=  13213 ,,,, nnnnnnnnnn xzuwuvuu ====γ=β  and ,2

nn xy =

then the iterative scheme (1.1) reduces to the iterative scheme with
errors for a mapping defined by Thianwan and Suantai [22]:

( )( ),1 nnnnnnnn ubTxaxbaPz ++−−=

( )( ),1 nnnnnnnn vdTxczdcPy ++−−=

( )( ) ,1,11 ≥β+α+β−α−=+ nwTxyPx nnnnnnnn (1.2)

where { } { } { }nnn wvu ,,  are bounded sequences in C and { } { } { },,, nnn cba

{ } { } { }nnnd βα ,,  are appropriate sequences in [ ].1,0

The purpose of this paper is to establish several strong and weak
convergence theorems of the multi-step iterative scheme with errors (1.1)
for a finite family of nonexpansive nonself-mappings in a uniformly
convex Banach space. More precisely, we prove weak convergence of the

iteration process in a uniformly convex Banach space X such that its dual
∗X  has the Kadee-Klee property.

Now, we recall the well known concepts and results.

Let X  be a Banach space with dimension .2≥X  The modulus of X is

the function ( ] [ ]1,02,0: →δX  defined by
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( ) ( ) .,1,1:
2
11inf







 −=ε==+−=εδ yxyxyxX

Banach space X is uniformly convex if and only if ( ) 0>εδX  for all

( ].2,0∈ε

A subset C of X is said to be retract if there exists continuous

mapping CXP →:  such that xPx =  for all .Cx ∈  Every closed

convex subset of a uniformly convex Banach space is a retract. A mapping

XXP →:  is said to be a retraction if .2 PP =  If a mapping P is a

retraction, then zPz =  for every ( ),PRz ∈  range of P. A mapping

XCT →:  is called demi-closed with respect to Xy ∈  if for each

sequence { }nx  in C and each x ∈ X, xn  x and yTxn →  imply that

Cx ∈  and .yTx =

Recall that a Banach space X is said to satisfy Opial's condition [11] if

xxn →  weakly as ∞→n  and yx ≠  implying that

.suplimsuplim yxxx n
n

n
n

−<−
∞→∞→

A Banach space X is said to have the Kadec-Klee property if for every

sequence { }nx  in X, xn  x and xxn →  together imply

.0→− xxn  A family { }NiTi ...,,2,1: =  of N nonself-mappings of C

( )CCTi →:.,e.i  with ( )∩ N
i iTFF

1=
∅≠=  is said to satisfy condition

(B) on C [3] if there is a nondecreasing function [ ) [ )∞→∞ ,0,0:f  with

( ) 00 =f  and ( ) 0>rf  for all ( )∞∈ ,0r  such that

{ } ( )( )FxdfxTx lNl
,max

1
≥−

≤≤
(1.3)

for all ;Cx ∈  see [15, p. 377] for an example of nonexpansive mappings

satisfying condition (B). The family { }NiTi ...,,2,1: =  is said to satisfy

condition (A) if (1.3) is replaced by

( )( )( )., TFxdfTxx ≥−

In the sequel, the following lemmas are needed to prove our main
results.
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Lemma 1.1 ([20]). Let { } { }nn ts ,  be two nonnegative sequences

satisfying

nnn tss +≤+1  for all .1≥n

If ∑∞
=

∞<
1

,n nt  then nn
s

∞→
lim  exists. Moreover, if there exists a

subsequence { }jns  of { }ns  such that 0→jns  as ,∞→j  then 0→ns  as

.∞→n

Lemma 1.2 ([23]). Let 1>p  and 1>R  be two fixed numbers and X
a Banach space. Then X is uniformly convex if and only if there exists a
continuous, strictly increasing, and convex function [ ) [ )∞→∞ ,0,0:g

with ( ) 00 =g  such that ( ) ( ) −λ−+λ≤λ−+λ ppp yxyx 11

( ) ( )yxgWp −λ  for all ( ) { },:0, RxXxByx R ≤∈=∈  and ∈λ

[ ],1,0  where ( ) ( ) ( ).11 λ−λ+λ−λ=λ pp
pW

Lemma 1.3 ([6]). Let X be a real reflexive Banach space such that its

dual ∗X  has the Kadec-Klee property. Let { }nx  be a bounded sequence in

X and ( );, nw xyx ω∈∗∗  here ( )nw xω  denote the set of all weak

subsequential limits of { }.nx  Suppose ( ) ∗∗
∞→

−−+ yxttxnn
1lim  exists for

all [ ].1,0∈t  Then .∗∗ = yx

Lemma 1.4 ([1]). Let X be a uniformly convex Banach space, C a
nonempty closed convex subset of X and XCT →:  a nonexpansive
mapping. Then TI −  is demi-closed at zero, i.e., if xxn →  weakly and

0→− nn Txx  strongly, then ( ),TFx ∈  where ( )TF  is the set of fixed

points  of T:

Lemma 1.5 ([17]). Let X be a Banach space which satisfies Opial's
condition and let { }nx  be a sequence in X. Let Xvu ∈,  be such that

uxnn −∞→lim  and vxnn −∞→lim  exist. If { }knx  and { }kmx  are

subsequences of { }nx  which converge weakly to u and v, respectively, then
.vu =
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We denote by Γ the set of strictly increasing, continuous convex

function ++ →γ RR:  with ( ) .00 =γ  Let C be a convex subset of the

Banach space X. A mapping CCT →:  is said to be type ( )γ  if Γ∈γ

and ,10 ≤α≤

( ) ( )( )( ) TyTxyxyxTTyTx −−−≤α−+α−α−+αγ 11

for all x, y in C.

Lemma 1.6 ([2], [10]). Let X be a uniformly convex Banach space and
C a convex subset of X. Then there exists Γ∈γ  such that for each

mapping CCS →:  with Lipschitz constant L,

( ) ( )( ) 




 −−−γ≤α−+α−α−+α − SySxLyxLyxSSySx 111 1

for all Cyx ∈,  and .10 <α<

2. Main Results

In this section, we prove weak and strong convergence theorems of
the iterative scheme given in (1.1) to a common fixed point for a finite
family of nonexpansive nonself-mappings in a uniformly convex Banach
space. In order to prove our main results, the following lemmas are
needed.

Lemma 2.1. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a
nonexpansive retraction. Let XCTTT N →:,,, 21 …  be nonexpansive

nonself-mappings. Let { }nx  be the sequence defined by (1.1) with

∑∞
=

∞<γ
1n

i
n  for each .,,2,1 Ni …=  If ( )∩ N

i iTFF
1

,:
=

∅≠=  then

∗
∞→

− xxnn
lim  exists for all .Fx ∈∗

Proof. Let .Fx ∈∗  Using (1.1), for each ,1≥n  we have

( ) ∗∗ −γ+β+α=− xuxxTPxx nnnnnnn
111

1
11
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( ) ( )∗−γ+β+α= xPuxxTP nnnnnn
111

1
1

∗−γ+β+α≤ xuxxT nnnnnn
111

1
1

∗∗∗ −γ+−β+−α≤ xuxxxxT nnnnnn
111

1
1

∗∗∗ −γ+−β+−α≤ xuxxxx nnnnnn
1111

,1
nn dxx +−≤ ∗

where .111 ∗−γ= xud nnn  Since ∑ ∑∞
=

∞
=

∞<∞<γ
1 1

11 .,n n nn d  Next, we

note that

( ) ∗∗ −γ+β+α=− xuxxTPxx nnnnnnn
2212

2
22

( ) ( )∗−γ+β+α= xPuxxTP nnnnnn
2212

2
2

∗−γ+β+α≤ xuxxT nnnnnn
2212

2
2

∗∗∗ −γ+−β+−α≤ xuxxxxT nnnnnn
2212

2
2

∗∗∗ −γ+−β+−α≤ xuxxxx nnnnnn
22122

( ) ∗∗∗ −γ++−β+−α≤ xudxxxx nnnnnnn
22122

∗∗∗ −γ+β+−β+−α= xudxxxx nnnnnnnn
221222

( ) ∗∗ −γ+β+−β+α= xudxx nnnnnnn
221222

,2
nn dxx +−≤ ∗

where .22122 ∗−γ+β= xudd nnnnn  Since ∑∞
=

∞<
1

1
n nd  and ∑∞

=
∞<γ

1
2 ,n n

∑∞
=

∞<
1

2 .n nd  Similarly, we have

( ) ∗∗ −γ+β+α=− xuxxTPxx nnnnnnn
3323

3
33

( ) ( )∗−γ+β+α= xPuxxTP nnnnnn
3323

3
3

∗−γ+β+α≤ xuxxT nnnnnn
3323

3
3
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∗∗∗ −γ+−β+−α≤ xuxxxxT nnnnnn
3323

3
3

( ) ∗∗∗ −γ++−β+−α≤ xudxxxx nnnnnnn
33233

∗∗∗ −γ+β+−β+−α= xudxxxx nnnnnnnn
332333

( ) ∗∗ −γ+β+−β+α= xudxx nnnnnnn
332333

,3
nn dxx +−≤ ∗

where ,33233 ∗−γ+β= xudd nnnnn  and so ∑∞
=

∞<
1

3 .n nd

By continuing a similar method, there exists a nonnegative real

sequences { }i
nd  such that ∑∞

=
∞<

1n
i
nd  and

.,,2,1,1, Nindxxxx i
nn

i
n …=∀≥∀+−≤− ∗∗ (2.1)

Thus, by (2.1), we have N
nn

N
nn dxxxxxx +−≤−=− ∗∗∗

+1  for all

.N∈n  Hence, by Lemma 1.1, ∗
∞→

− xxnn
lim  exists. The proof is

completed.                                                                                                        

Lemma 2.2. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a
nonexpansive retraction. Let XCTTT N →:,,, 21 …  be nonexpansive

nonself-mappings. Let { }nx  be the sequence defined by (1.1) with

∑∞
=

∞<γ
1n

i
n  and { } [ ]ε−ε⊆α 1,i

n  for all Ni ,,2,1 …=  for some

( ).1,0∈ε  If ( )∩N
i iTFF

1
:

=
∅≠=  and ( ) 1suplim <β+α

∞→

i
n

i
n

n
 for all

,...,,2,1 Ni =  then 0lim =−
∞→ ninn

xTx  for all .,,2,1 Ni …=

Proof. Let .Fx ∈∗  Then, by Lemma 2.1, ∗
∞→ − xxnnlim  exists.

Let .lim rxxnn =− ∗
∞→  If ,0=r  then by the continuity of each iT  the

conclusion follows. Suppose that .0>r  Since { }nx  and { }i
nu  are bounded
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sequences for all ,,,2,1 Ni …=  there exists 0>R  such that ∗− − xxi
n

1

( ) ( ) ( )0, 11
R

i
n

i
n

i
nni

i
n

i
n

i
n BxuxxTxu ∈−γ+−−γ+ −∗−  for all 1≥n  and for

all .,,2,1 Ni …=  Using Lemma 1.2 and (2.1), we have

( ) 212 ∗−∗ −γ+β+α=− xuxxTPxx i
n

i
n

i
n

i
nni

i
n

i
n

21 ∗− −γ+β+α≤ xuxxT i
n

i
n

i
n

i
nni

i
n

( ( ))1−∗ −γ+−α= i
n

i
n

i
nni

i
n xuxxT

  ( ) ( ( )) 2111 −∗− −γ+−α−+ i
n

i
n

i
n

i
n

i
n xuxx

( ) 21−∗ −γ+−α≤ i
n

i
n

i
nni

i
n xuxxT

 ( ) ( ) 2111 −∗− −γ+−α−+ i
n

i
n

i
n

i
n

i
n xuxx

 ( ) ( )1
2

−−α− i
nni

i
n xxTgW

( )21−∗ −γ+−α≤ i
n

i
n

i
nn

i
n xuxx

 ( ) ( )2111 −∗− −γ+−α−+ i
n

i
n

i
n

i
n

i
n xuxx

 ( ) ( )1
2

−−α− i
nni

i
n xxTgW

( )211 −−∗ −γ++−α≤ i
n

i
n

i
n

i
nn

i
n xudxx

 ( ) ( )2111 −−∗ −γ++−α−+ i
n

i
n

i
n

i
nn

i
n xudxx

 ( ) ( )1
2

−−α− i
nni

i
n xxTgW

( ) ( ) ( ),1
2

21 −−∗ −α−λ+−= i
nni

i
n

i
nn xxTgWxx      (2.2)

where .: 111 −−− −γ+=λ i
n

i
n

i
n

i
n

i
n xud  Since ∑ ∑∞

=
∞
=

− ∞<γ∞<
1 1

1 ,n n
i
n

i
nd

and { }1−− i
n

i
n xu  is bounded, we have ∑∞

=
− ∞<λ

1
1 .n

i
n  Since

[ ]ε−ε∈α 1,i
n  for some ( ),1,0∈ε  it follows that ( )i

nW α≤ε=λ 2
2:  for all



SORNSAK THIANWAN46

.Nn ∈  This together with (2.2), we have

( ) ( ) 2211 ∗−∗− −−λ+−≤−λ xxxxxxTg i
n

i
nn

i
nni

( )2112 2 −∗−∗ λ+−λ+−= i
nn

i
nn xxxx

2
1

∗
+ −− xxn

,12
1

2 −∗
+

∗ ρ+−−−= i
nnn xxxx

where ( ) .2: 2111 −∗−− λ+−λ=ρ i
nn

i
n

i
n xx  Since ∑∞

=
− ∞<λ

1
1 ,n

i
n  we get

∑∞
=

− ∞<ρ
1

1 .n
i
n  This implies that ( ) .0lim 1 =− −

∞→
i
nnin

xxTg  Since g is

strictly increasing and continuous at 0 with ( ) ,00 =g  it follows that

0lim 1 =− −
∞→

i
nnin

xxT  for all ....,,2,1 Ni =  Note that,

( ) 21121
1

121 −−−−−
−

−−− −γ+β+α=− i
n

i
n

i
n

i
n

i
nni

i
n

i
n

i
n xuxxTPxx

( ) ( )21121
1

1 −−−−−
−

− −γ+β+α= i
n

i
n

i
n

i
n

i
nni

i
n xPuxxTP

( ) ( )2112
1

1 −−−−
−

− −γ+−α≤ i
n

i
n

i
n

i
nni

i
n xuxxT

.2112
1

1 −−−−
−

− −γ+−α≤ i
n

i
n

i
n

i
nni

i
n xuxxT

Since 0lim 2
1 =− −
−∞→

i
nnin

xxT  and ∑∞
=

− ∞<γ
1

1 ,n
i
n  it follows that

.0lim 21 =− −−
∞→

i
n

i
nn

xx

Using (1.1), for all ,...,,2,1 Ni =  we have

( ) n
i
n

i
n

i
n

i
nni

i
nn

i
n xuxxTPxx −γ+β+α=− −−−−

−
−− 1121

1
11

n
i
n

i
n

i
n

i
nni

i
n xuxxT −γ+β+α≤ −−−−

−
− 1121

1
1

( ) ( ) ( )n
i
n

i
nn

i
n

i
nnni

i
n xuxxxxT −γ+−β+−α= −−−−

−
− 1121

1
1
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( )n
i
n

i
nni

i
n xxxxT −+−α= −−

−
− 22

1
1

 ( ) ( )n
i
n

i
nn

i
n

i
n xuxx −γ+−β+ −−−− 1121

 n
i
n

i
n

i
nni

i
n xxxxT −α+−α≤ −−−

−
− 212

1
1

 n
i
n

i
nn

i
n

i
n xuxx −γ+−β+ −−−− 1121

 1212
1

1 −−−−
−

− −α+−α≤ i
n

i
n

i
n

i
nni

i
n xxxxT

 n
i
n

i
n

i
n

i
nn

i
n xxxxxx −+−β+−+ −−−−− 11211

 n
i
n

i
n xu −γ+ −− 11

 1212
1

1 −−−−
−

− −α+−α≤ i
n

i
n

i
n

i
nni

i
n xxxxT

 12111 −−−−− −β+−α+ i
n

i
n

i
nn

i
n

i
n xxxx

 .1111
n

i
n

i
nn

i
n

i
n xuxx −γ+−β+ −−−−

This implies that

( ) 2
1

11111 −
−

−−−− −α≤−β−α− i
nni

i
nn

i
n

i
n

i
n xxTxx

121 −−− −α+ i
n

i
n

i
n xx

121 −−− −β+ i
n

i
n

i
n xx

.11
n

i
n

i
n xx −γ+ −−

If ( ) 1suplim <β+α
∞→

i
n

i
n

n
 for all ,,,2,1 Ni …=  then there exist a

positive integer 0n  and ( )1,0∈η  such that 1<η<β+α i
n

i
n  for all

.0n≥η  Hence

( ) n
i
n

i
n

i
nnin

i
n xuxxTxx −γ+−≤−η− −−−

−
− 112

1
11

.,2 0
12 nnxx i

n
i
n ≥∀−+ −−
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Since  0lim,0lim 122
1 =−=− −−

→∞
−

−→∞
i
n

i
nn

i
nnin

xxxxT  and  ,1
1

∞<γ −∞

=∑ i
nn

it follows that .0lim 1 =− −
∞→

i
nnn

xx  Thus, for all ,,,2,1 Ni …=  we have

ni
i
n

i
nnnin xTxxxxTx −+−=− −− 11

011 →−+−≤ −− i
nni

i
nn xxTxx  as .∞→n

The proof is completed.                                                                                  

The following result gives a strong convergence for a finite family of
nonexpansive nonself-mappings in a uniformly convex Banach space
satisfying Condition (B).

Theorem 2.3. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a
nonexpansive retraction. Let XCTTT N →:,,, 21 …  be nonexpansive

nonself-mappings which are satisfying condition (B). Let { }nx  be the

sequence defined by (1.1) with ∑∞
=

∞<γ
1n

i
n  and { } [ ]ε−ε⊆α 1,i

n  for all

Ni ...,,2,1=  for some ( ).1,0∈ε  If ( )∩ N
n iTFF

1
:

=
∅≠=  and

( ) 1suplim <β+α
∞→

i
n

i
n

n
 for all ,,,2,1 Ni …=  then { }nx  converges strongly

to a common fixed point in F.

Proof. By Lemma 2.2, 0lim =−
∞→ nnin

xxT  for all .,,2,1 Ni …=

Now by condition (B), ( )( ) { }nniNinn xxTMFxdf −=≤
≤≤1

max:,  for all

.N∈n  Hence ( )( ) .0,lim =
∞→

Fxdf nn
 Since f is a nondecreasing function

and ( ) ,00 =f  therefore ( ) .0,lim =
∞→

Fxd nn
 Now we can choose a

subsequence { }jnx  of { }nx  and a sequence { } Fyj ∈  such that

.2 j
jn yx j

−<−  By the following method of the proof of Tan and Xu

[20], we get that { }jy  is a Cauchy sequence in F and so it converges. Let
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.yyj →  Since F is closed, therefore Fy ∈  and then .yx jn →  By

Lemma 2.1, ∗
∞→

− xxnn
lim  exists for all ., FyxFx n ∈→∈∗                  

If ,,,,,,3 1321
321 nnnnnnnn bcaTTTTN γ=α=αα==α≡===

132132 ,,,,, nnnnnnnnnnnn xzuwuvuud ====γ=βγ=  and ,2
nn xy =

then the iterative scheme (1.1) reduces to that of (1.2) and the following
result is obtained.

Theorem 2.4. Let X be a uniformly convex Banach space, C a
nonempty closed convex nonexpansive retract of X with P as a
nonexpansive retraction, and XCT →:  a nonexpansive nonself-
mapping with ( ) .∅≠TF  Suppose that { } { } { } { } { }nnnnn cba ,,,, βα  and

{ }nd  are sequences of real numbers in [ ]1,0  with [ ]1,0∈+ nn dc  and

nn β+α  [ ]1,0∈  for all ,1≥n  and ∑∞

=
∞<

1
,

n nb  ,
1∑∞

=
∞<

n nd

.
1∑∞

=
∞<β

n n  Suppose that T satisfies condition (A): If

(i) ( ) ,1supliminflim0 <β+α≤α<
∞→∞→ nn

n
nn

and

(ii) ( ) ,1supliminflim0 <+≤<
∞→∞→ nn

n
nn

dcc  and ,1suplim <
∞→

n
n

a

then the sequences { } { }nn yx ,  and { }nz  defined by the three-step iterative

scheme (1.2) converge strongly to a fixed point of T.

Proof. Let ( ).TFx ∈∗  Then, as in the proof of [22, Lemma 2.1 (i)],

{ }nx  is bounded, ∗
∞→ − xxnnlim  exists and

( ),1 nnnnn dbMxxxx β+++−≤− ∗∗
+

where { } { } =≥−=≥−= ∗∗
321 ,1:sup,1:sup MnxvMnxuM nn

{ } { },3,2,1:max,1:sup ==≥− ∗ iMMnxw in  and so (∑∞
=1n nbM

) ∞<β++ nnd  for all .1≥n  This implies that ( )( ) ≤+ TFxd n ,1

( )( ) ( )nnnn dbMTFxd β+++,  and so, by Lemma 1.1, ( ,lim nn xd∞→
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( ))TF  exists. Also, by [22, Lemma 2.1 (iv)], .0lim =−∞→ nnn Txx

Since T satisfies condition (A), we conclude that

( )( ) .0,lim =∞→ TFxd nn  Next we show that { }nx  is a Cauchy sequence.

Since ( )( ) 0,lim =∞→ TFxd nn  and ( ) ,
1

∞<β++∑∞
= nnnn dbM

given any ,0<ε  there exists a natural number 0n  such that

( )( )
4

, ε<TFxd n  and ( )∑ =
ε<β++

n
nk kkk dbM

0 2
 for all .0nn ≥  So we

can find ( )TFy ∈∗  such that .
40
ε<− ∗yxn  For 0nn ≥  and ,1≥m

we have

∗∗
++ −+−=− yxyxxx nmnnmn

( )∑
=

∗∗ β+++−+−≤
n

nk
kkknn dbMyxyx

0
00

.
244

ε=ε+ε+ε<

This shows that { }nx  is a Cauchy sequence and so is convergent since

X is complete. Let .lim uxnn =∞→  Then ( )( ) .0, =TFud  It follows that

( ).TFu ∈  This completes the proof.

Theorem 2.5. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a
nonexpansive retraction. Let XCTTT N →:,,, 21 …  be nonexpansive

nonself-mappings. Suppose that one of the mappings in
{ }NiTi ,,2,1: …=  is completely continuous. Let { }nx  be the sequence

defined by (1.1) with ∑∞
=

∞<γ
1n

i
n  and { } [ ]ε−ε⊆α 1,i

n  for all

Ni ,,2,1 …=  for some ( ).1,0∈ε  If ( )∩N
i iTFF

1
:

=
∅==  and

( ) 1suplim <β+α
∞→

i
n

i
n

n
 for all ,,,2,1 Ni …=  then { }nx  converges strongly

to a common fixed point in F.
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Proof. By Lemma 2.1, { }nx  is bounded. In addition, by Lemma 2.2,

0lim =−
∞→ ninn

xTx  for all ,,,2,1 Ni …=  then { }nixT  are also

bounded for all .,,2,1 Ni …=  If kT  is completely continuous for some

{ },,,2,1 Nk …∈  then there exists a subsequence { }jnkxT  of { }nkxT

such that ∗→ xxT jnk  as .∞→j  It follows from Lemma 2.2 that

.0lim =−∞→ jj nknj xTx  So by the continuity of kT  and Lemma 1.4, we

have 0lim =− ∗
∞→ xx jnj  and .Fx ∈∗  Furthermore, by Lemma 2.1,

we get that ∗
∞→ − xxnnlim  exists. Thus .0lim =− ∗

∞→ xxnn  The

proof is completed.

For ,,,,,,3 1321
321 nnnnnnnn bcaTTTTN γ=α=αα=α=≡===

132132 ,,,,, nnnnnnnnnnnn xzuwuvuud ====γ=βγ=  and 2
nn xy =  in

Theorem 2.5, we obtain the following result.

Corollary 2.6 ([22, Theorem 2.2]). Let X be a uniformly convex
Banach space, C a nonempty closed convex nonexpansive retract of X with
P as a nonexpansive retraction, and XCT →:  a completely continuous
nonexpansive nonself-mapping with ( ) .∅≠TF  Suppose that { },nα

{ } { }nn a,β { } { }nn cb ,  and { }nd  are sequences of real numbers in [ ]1,0  with

[ ]1,0∈+ nn dc  and [ ]1,0∈β+α nn  for all ,1≥n  and ,
1

∞<∑∞
= nn b

,
1

∞<∑∞
= nn d ,

1
∞<β∑∞

= nn  and

(i) ( ) ,1supliminflim0 <β+α≤α<
∞→∞→ nn

n
nn

 and

(ii) ( ) 1supliminflim0 <+≤<
∞→∞→ nn

n
nn

dcc  and .1suplim <α
∞→

n
n

Let { } { }nn yx ,  and { }nz  be the sequences defined by the three-step

iterative scheme ( ).2.1  Then { } { }nn yx ,  and { }nz  converge strongly to a

Fixed point of T.

We recall that a mapping CCT →:  is called semi-compact (or
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hemicompact) if any sequence { }nx  in C satisfying 0→− nn Txx  as

∞→n  has a convergent subsequence.

Theorem 2.7. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a
nonexpansive retraction. Let XCTTT N →:,,, 21 …  be nonexpansive

nonself-mappings. Suppose that one of the mappings in
{ }NiTi ,,2,1: …=  is semi-compact. Let { }nx  be the sequence defined by

( )1.1  with ∞<γ∑∞
=

i
nn 1

 and { } [ ]ε−ε⊆α 1,i
n  for all Ni ,,2,1 …=  for

some ( ).1,0∈ε  If ( ) ∅≠= = i
N
i TFF 1: ∩  and ( ) 1suplim <β+α

∞→
i
n

i
nn  for all

,,,2,1 Ni …=  then { }nx converges strongly to a common fixed point in F.

Proof. Suppose that 
0iT  is semi-compact for some { }....,,2,10 Ni ∈

By Lemma 2.2, we have .0lim
0

=−
∞→ ninn

xTx  Since 
0iT  is semi-compact,

there exists a subsequence { }jnx  of { }nx  and Cx ∈∗  such that

∗→ xx jn  as .∞→j  Now Lemma 2.2 guarantees that jj ninj
xTx −

∞→
lim

0=  for all .,,2,1 Ni …=  Hence 0=− ∗∗ xTx i  for all .,,2,1 Ni …=

This implies that .Fx ∈∗  By Lemma 2.1, ∗
∞→ − xxnnlim  exists and

then .0limlim =−=− ∗
∞→

∗
∞→ xxxx jnjnn  This completes the

proof.

In the next result, we prove weak convergence of the sequence { }nx

defined by (1.1) in a uniformly convex Banach space satisfying Opial’s
condition.

Theorem 2.8. Let X be a uniformly convex Banach space which
satisfies Opia’s condition and C a nonempty closed convex nonexpansive
retract of X with P as a nonexpansive retraction. Let →CTTT N :...,,, 21

X  be nonexpansive nonself-mappings. Let { }nx  be a sequence defined by

(1.1) with ∑∞
=

∞<γ
1n

i
n  and { } [ ]ε−ε⊆α 1,i

n  for all Ni ...,,2,1=  for
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some ( ).1,0∈ε  If ( )∩N
i iTFF

1
:

=
∅==  and ( ) 1suplim <β+α

∞→

i
n

i
n

n
 for all

,...,,2,1 Ni =  then { }nx  converges weakly to a common fixed point in F.

Proof. Let .Fx ∈∗  By Lemma 2.1, ∗
∞→

− xxnx
lim  exists. Now we

prove that { }nx has a unique weak subsequential limit in F. To prove

this, let { }inx  and { }jnx  be subsequences of { }nx  and Czz ∈21,  such

that 1zx in →  weakly as ∞→i  and 2zx jn →  weakly as .∞→j  By

Lemma 2.2,

jjii nknjnkni
xTxxTx −==−

∞→∞→
lim0lim

for all Nk ...,,2,1=  and by Lemma 1.4 insures that kTI −  are demi-

closed at zero for all ....,,2,1 Nk =  Therefore we obtain 11 zzTk =  and

22 zzTk =  for all ....,,2,1 Nk =  Thus ., 21 Fzz ∈  It follows from

Lemma 1.5 that .21 zz =  Therefore { }nx  converges weakly to a common

fixed point in F.

For ,,,,,,3 1321
321 nnnnnnnn bcaTTTTN γ=α=αα=α=≡===

132132 ,,,,, nnnnnnnnnnn xzuwuvuud ====γ=βγ=  and 2
nn xy =  in

Theorem 2.8, we obtain the following result.

Corollary 2.9 ([22, Theorem 2.4]). Let X be a uniformly convex
Banach space which satisfies Opial’s condition, C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction, and

XCT →:  a nonexpansive nonself-mapping with ( ) .∅≠TF  Suppose

that { } { } { } { } { } { }nnnnnn dcba ,,,,, βα  are sequences of real numbers in

[ ]1,0  with [ ]1,0∈+ nn dc  and [ ]1,0∈β+α nn  for all ,1≥n  and

∑ ∑ ∑∞
=

∞
=

∞
=

∞<β∞<∞<
1 1 1

,,,n n n nnn db  and

(i)      ( ) ,1supliminflim0 <β+α≤α< ∞→∞→ nnnnn

and
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(ii)       ( ) 1supliminflim0 <+≤< ∞→∞→ nnnnn dcc  and

                  .1suplim <∞→ nn a

Let { }nx  be the sequence defined by three-step iterative scheme (1.2).

Then { }nx  converges weakly to a fixed point of T.

Finally, we will prove weak convergence of the sequence { }nx  defined

by (1.1) in a uniformly convex Banach space X whose dual ∗X  has the

Kadec-Klee property.

Theorem 2.10. Let X be a uniformly convex Banach space and C a
nonempty closed convex nonexpansive retract of X with P as a
nonexpansive retraction. Let XCTTT N →:...,,, 21  be nonexpansive

nonself-mappings with ( )∩N
i iTFF

1
.:

=
∅==  From an arbitrary ,1 Cx ∈

define the sequence { }nx  by the iterative scheme (1.1) with ∑∞
=

∞<γ
1n

i
n

for all ....,,2,1 Ni =  Then for all ,, Fvu ∈  the limit

( ) vuttxnn
−−+

∞→
1lim

exists for all [ ].1,0∈t

Proof. It follows from Lemma 2.1 that ∗
∞→

− xxnn
lim  exists for all

.Fx ∈∗  This implies that { }nx  is bounded. Then there exists 0>R

such that { } ( ) .0 CBx Rn ∩⊂  Let ( ) ( ) ,1: vuttxta nn −−+=  where

( ).1,0∈t  Then ( ) vuann
−=

∞→
0lim  and by Lemma 2.1, ( )1lim nn

a
∞→

vxnn
−=

∞→
lim  exists. Without loss of the generality, we may assume

that ruxnn
=−

∞→
lim  for some positive number r. For any 1≥n  and for

all ,...,,2,1 Ni =  we define CCAi
n →:  by

( ),: 1 i
n

i
n

i
n

i
ni

i
n

i
n uATPA γ+β+α= −
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where ,0 IAn =  the identity operator on C. Thus, for all ,, Cyx ∈  we

have yAxAyxyAxA i
n

i
n

i
n

i
n

i
n

i
n

11 −− −β+−α≤−  for all ,,,2 Ni …=

and .111 yxyxyxyAxA nnn
i
n −≤−β+−α≤−  This implies, by

induction, that i
nA  is a nonexpansive mappping for all Ni ...,,2,1=

and for all .Nn ∈  Set ,,: 21, nAAAS N
n

N
mn

N
mnmn −+−+=  1≥m

and ( )( ) ( ( ) ) ,11: ,,,, uStxtSuttxSb mnnmnnmnmn −+−−+=  where

t≤0 .1≤  It easy to see that mnnmnnn
N
n xxSxxA ++ == ,1 ,  and

.,, yxySxS mnmn −≤−

We show first that, for any 0, , →−∈ ∗∗∗ xxSFx mn  uniformly for

all 1≥m  as .∞→n  Indeed, for any ,Fx ∈∗  we have

∗∗∗−∗∗ −γ+−β≤− xuxxAxxA i
n

i
n

i
n

i
n

i
n

1

for all ,...,,2 Ni =  and .111 ∗∗∗ −γ≤− xuxxA nnn  Therefore

+−γσ+−γσ≤− ∗∗∗∗ xuxuxxA nnnnnn
N
n

223112

∑ =
∗∗−− γ≤−γ+−γσ+ N

i
i
n

N
n

N
n

N
n

N
n

N
n Mxuxu

1
11 ,

for all ,1≥n  where

{ } { }






 −−= ∗

≥

∗

≥
xuxuM N

n
n

n
n 1

1

1
sup...,,supmax  and ∏ =

β=σ
N

ki
i
n

k
n .

Hence

∗
+−+−+

∗
−+−+

∗∗ −≤− xAAAxAAAxxS N
n

N
mn

N
mn

N
n

N
mn

N
mnmn 12121,

∗
+−+−+

∗
+−+−+ −+ xAAAxAAA N

n
N

mn
N

mn
N
n

N
mn

N
mn 221121
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∗∗
−+

∗
−+

∗
−+−+ −+−+ xxAxAxAA N

mn
N

mn
N

mn
N

mn 1121

∗∗
−+

∗∗
+

∗∗ −++−+−≤ xxAxxAxxA N
mn

N
n

N
n 11

( )∑ = −++ γ++γ+γ≤
N

i
i

mn
i
n

i
nM

1 11

,
∗

δ≤ x
n

where ∑ ∑∞
=

∞
=

γ=δ
∗

1
.: i nk

i
k

x
n M  Since ∑∞

=
∞<γ

1n
i
n  for all ...,,2,1=i

,N  we have 0→δ
∗x

n  as ∞→n  and hence 0, →− ∗∗ xxS mn  as

.∞→n  It follows from Lemma 1.6 that

( )( ) ( ( ) )uStxtSuttxSb mnnmnnmnmn ,,,, 11 −+−−+=

( )uSxSux mnnmnn ,,
1 −−−γ≤ −

( )uSuuxux mnmnn ,
1 −+−−−γ= +
−

( ).,
1 uuSuxux mnmnn −−−−−γ≤ +
−

Hence ( ) ( ).,, uuSuxuxb mnmnnmn −−−−−≤γ +  This implies

that ( ) .0lim ,, =γ∞→ mnmn b  By the property of ,γ  we obtain that  

∞→mn,lim  .0, =mnb  Observe that

( ) ( ) vuttxta mnmn −−+= ++ 1

( ) vutxtS nmn −−+= 1,

( ) ( )( )uttxSutxtS nmnnmn −+−−+≤ 11 ,,

   ( )( ) vuttxS nmn −−++ 1,

( ) ( )( ) ( )( )uSututtxSuStxtS mnnmnmnnmn ,,,, 111 −−+−+−−+=
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                  ( )( ) vuttxS nmn −−++ 1,

( )( ) ( ) uSutvuttxSb mnnmnmn ,,, 11 −−+−−++≤

( )( ) vvSvSuttxSb mnmnnmnmn −+−−++≤ ,,,, 1

    ( ) uSut mn,1 −−+

( ) ( ) uSutvvStab mnmnnmn ,,, 1 −−+−++≤

( ) ( ) .1,
u
n

v
nnmn ttab δ−+δ++≤

Consequently,

( ) ( )tata mn
m

m
m

+
∞→∞→

= suplimsuplim

( ( ) ( ) )u
n

v
nnmn

m
ttab δ−+δ++≤

∞→
1suplim ,

( ( ))u
nnmn uxux δ−−−−γ≤

∞→
− lim1

 ( ) ( ) u
n

v
nn tta δ−+δ++ 1

and

( ) ( ) ( ) ( ).inflim00inflim0suplim 1 tatata nnnnn
n ∞→∞→

−

∞→
=+++γ≤

This implies that ( )tann ∞→lim  exists for all [ ].1,0∈t  This completes

the proof.                                                                                                         

Theorem 2.11. Let X be a real uniformly convex Banach space such

that its dual ∗X  has the Kadec-Klee property and C a nonempty closed
convex nonexpansive retract of X with P as a nonexpansive retraction. Let

XCTTT N →:...,,, 21  be a nonexpansive nonself-mappings with

( )∩N
i iTFF

1
:

=
∅≠=  and ( ) .1suplim <β+α

∞→

i
n

i
n

n
 From arbitrary Cx ∈1

define the sequence { }nx  by the iterative scheme (1.1) with ∑∞
=

∞<γ
1n

i
n
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and [ ]ε−ε∈α 1,i
n  for all Ni ...,,21=  for some ( ).1,0∈ε  Then { }nx

converges weakly to some fixed point in F.

Proof. It follows from Lemma 2.1 that the sequence { }nx  is bounded.

Then there exists a subsequence { }jnx  of { }nx  converging weakly to a

point .Cx ∈∗  By Lemma 2.2, we have 0lim =−
∞→ jj ninj

xTx  for all

....,,2,1 Ni =  Now using Lemma 1.4, we have iTI −  is demi-closed at

zero for all ....,,2,1 Ni =  This implies that ∗∗ = xxTi  for all

....,,2,1 Ni =  Thus .Fx ∈∗  Next we prove that { }nx  converges weakly

to .∗x  Suppose that { }inx  is another subsequence of { }nx  converging

weakly to some .∗y  Then Cy ∈∗  and so ( ) ., Fxyx nw ∩ω∈∗∗  By

Theorem 2.10,

( ) ∗∗
∞→

−−+ yxttxnn
1lim

exists for all [ ].1,0∈t  It follows from Lemma 1.3, we have .∗∗ = yx  As a

result, ( )nw xω  is a singleton, and so { }nx  converges weakly to some fixed

point in F.                                                                                                        
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